

Beyond Detection: How Genomics is helping Crops Fight Disease from the inside out

**D. Prakash^{1*}, R Manasa²,
Triveni M K³,
Mahesh Santosh Shirsat⁴ and
Renish G Roy⁵**

¹Assistant Professor, Department of Entomology, School of Agricultural Sciences, Sri Manakula Vinayagar Engineering College, Madagadipet, Puducherry

²Research Fellow, Groundnut Pathology, ICRISAT, Patancheru, Hyderabad

³Young Professional II, ICAR Directorate of Cashew Research, Puttur

⁴Former Research Scholar, Department of Genetics and Plant Breeding, College of Agriculture, Vellayani, Kerala Agricultural University, Thrissur, Kerala

⁵Research Scholar, Department of Genetics and Plant Breeding, Faculty of Agriculture, Tantia University, SGNR

Open Access

*Corresponding Author

D. Prakash*

Article History

Received: 25.1.2026

Revised: 30.1.2026

Accepted: 4.2.2026

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Plant diseases remain one of the most persistent and costly challenges facing global agriculture, responsible for substantial yield losses, increased production costs, and instability in food supply systems worldwide. Despite decades of progress in crop protection, disease management has largely depended on chemical pesticides, resistant cultivars with narrow genetic bases, and reactive interventions applied after infection has already occurred. These approaches are increasingly inadequate in the face of rapidly evolving pathogens, stricter environmental regulations, and the growing influence of climate change on disease dynamics. Advances in genomics and biotechnology are now reshaping this paradigm by enabling a deeper understanding of plant immune systems and the genetic basis of disease resistance. Rather than merely detecting or suppressing pathogens, modern strategies focus on strengthening the plant's own defence mechanisms through genome-informed breeding, precision gene editing, and microbiome-assisted resilience. This shift marks a critical transition toward sustainable, proactive, and long-term solutions for crop disease management.

Plant disease remains one of the biggest threats to global agriculture, capable of reducing yields, raising production costs, and destabilizing food supply chains. For decades, protecting crops from disease meant spraying insecticides, scouting field for diseased plants and reacting after damage had already begun. While effective to an extent, this model struggles against fast evolving pathogens, increasing environmental concerns, and pressure of climate change. But what if plants could defend themselves before pathogens ever had a chance? These challenges are pushing scientists and breeders to explore more sustainable and proactive solutions.

Thanks to breakthroughs in genetics and biotechnology, that idea is moving from imagination to reality. Scientists around the world are now shifting their focus from simply detecting plant diseases to building crops that can not be easily infected in the first place. This new strategy-driven by genomics, modern breeding, and gene editing-is opening a powerful chapter in plant protection. Through genome sequencing, modern breeding tools and precise gene editing technologies like CRISPER, resistance traits once lost during domestication can be recovered, introduced or fine tuned directly within the crop genome.

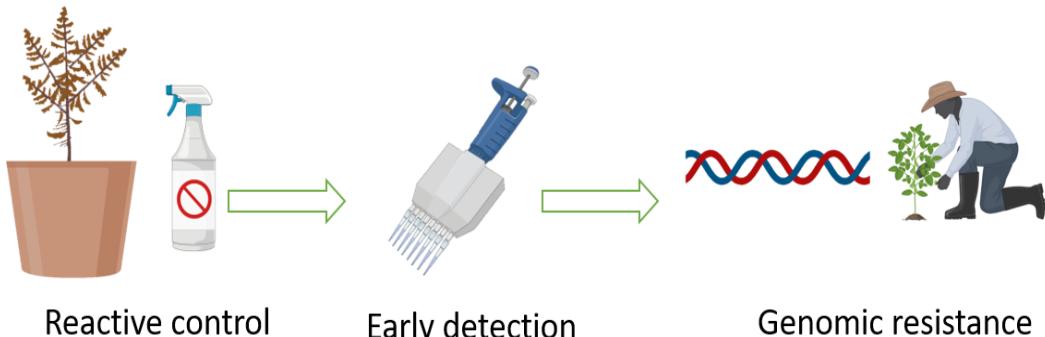
Plants are not Passive Victims

It is easy to assume that plants are helpless when fungi, bacteria or viruses attack. In truth, plants are equipped with their own immune systems. Some can sense invading microbes within

minutes, seal off damage tissues, or produce natural chemicals that make pathogen retreat. The challenge is that not all crops come with equally strong defence. Over centuries of farming, many plants were selected for yields, flavor, or appearance-not for disease resistance. As a result, valuable resistance genes were often lost along the way.

Genomics brings back the hidden defences

By sequencing the plant DNA, researchers have discovered resistance genes hiding in wild relatives and ancient landraces. These plants may look unproductive, but they possess genetic traits that helped them survive nature's harsh challenge. Scientists are now transferring these resistance traits back into modern crops. That used to take decades of trial and error breeding can now be pinpointed as powerful tools that scan genomes for disease related genes (Table 1).


Table 1. Genomic tool Accelerating Disease Resistance Breeding

Genomic Tool	Application in Plant Disease Resistance	Benefits
Whole genome sequencing	Identifying R-genes and defence regulators	Fast detection of target regions
Pangenomics	Capturing genetic variation genetic variation across species	Restores lost alleles from wild relatives
GWAS (Genome Wide Association Study)	Linking traits to genetic markers	High mapping precision
Marker-Assisted selection	Selects plants carrying resistance markers	Speeds up breeding cycles
Genomic selection	Predicts disease resistance performance	Enables multi-trait improvement
Transcriptomics	Studies gene expression during infection	Helps reveal defence pathways

Gene Editing: A Precision work

The most promising technology in the space is gene editing, including CRISPER. Instead of introducing foreign genes, CRISPR allows scientist to make precise changes to plant's own DNA (Figure 1, Table 2). These tweaks can:

- Turn on natural defence systems
- Disable genes that pathogens manipulate
- Strengthen cell walls and barriers
- Activate biochemical defence pathways

Figure 1. From Detection to Resistance

Table 2. Gene-Edited crops showing Enhance Resistance

Crop	Target pathogen	Editing strategy	Outcome
Rice	Bacterial blight (Xanthomonas)	Knockout of SWEET susceptibility genes	Reduced infection and lesion spread
Wheat	Powdery mildew	CRISPR editing of MLO genes	Durable broad-spectrum resistance
Potato	Late blight (Phytophthora infestans)	R-gene stacking	Strong multi-gene resistance
Tomato	Fusarium wilt	Editing immune receptor domains	Improved vascular resistance
Citrus	Canker	Targeting susceptibility genes	Partial tolerance, lower disease severity

Climate resilience

Climate change is making the disease problem more complicated. Warmers temperatures and shifting rainfall patterns are helping pathogens expand into new regions and adapt faster than before. At the same time, global food demand continues to climb and chemical control alone is no longer sustainable. Building resistance directly into plants offers a powerful, durable and scalable solution for the decades ahead.

The Microbiome Twist

A surprising twist in the story is that plant do not fight alone. Their roots and leaves host beneficial microbes that help them.

- Block pathogens
- Boost immunity
- Produce antimicrobial compounds

A Glimpse of the Future

The future of the plant disease management may look very different from the past. Rather than reacting to outbreaks, farmers may grow crops engineered to resist multiple pathogens simultaneously, supported by protective microbiomes and guided by predictive models that forecast disease risks. In this future, pesticides become tools of last resort, not first response and plant immunity becomes a central strategy for global food security.

CONCLUSION

Plant diseases will always be part of agriculture, but genomics is giving crops a new way to fight back. By understanding and enhancing the natural defences that plant already possess, scientists are creating varieties that are healthier, more resilient and better suited for a changing planet. The front line of plant disease control is shifting from the field to the genome and it may be one of the most important scientific revolutions in modern agriculture.

REFERENCES

Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas Genome Editing and Precision Plant Breeding. *Annual Review of Plant Biology*, 70, 667–697.
<https://doi.org/10.1146/annurev-aplant-050718-100049>.

Manser, B., Koren, A., Consuegra, S., & Eizaguirre, C. (2021). Pangenomics and the Recovery of Lost Resistance Genes in Domesticated Crops. *Trends in Plant Science*, 26(2), 117–128.
<https://doi.org/10.1016/j.tplants.2020.09.007>.

Zaidi, S. S-e-A., Tashkandi, M., Mansoor, S., & Mahfouz, M. M. (2020). Engineering Plant Immunity: Gene Editing for Disease Resistance. *Plant Biotechnology Journal*, 18(10), 2090–2105.
<https://doi.org/10.1111/pbi.13346>.

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The Global Burden of Crop Diseases. *Nature Ecology & Evolution*, 3, 430–439.
<https://doi.org/10.1038/s41559-018-0793-y>.

Xu, Y. (2022). Genomic Selection in Plant Breeding under Climate Change. *Theoretical and Applied Genetics*, 135(6), 1911–1938.
<https://doi.org/10.1007/s00122-022-04139-y>.

Berendsen, R.L., Pieterse, C.M.J., & Bakker, P.A.H.M. (2012). The Plant Microbiome in Health and Disease. *Science*, 336(6082), 1363–1369.
<https://doi.org/10.1126/science.1221092>.