

Agronomic Strategies for Mitigating Drought Stress in Crops

Shrankhla Mishra^{1*},
Yuktha D U²,
Gajare Sanket Subhash³,
Asha A. Chavan⁴ and
Manish Kumar⁵


¹Assistant Professor, Department of Agricultural Engineering, RVSKVV, Gwalior

²Ph.D. Scholar, Department of Agronomy, University of Agricultural Sciences, Dharwad

³M.Sc. Scholar, Department of Agronomy, GD Goenka University, Gurugram, Haryana

⁴Assistant Professor, Department of Agronomy, College of Agriculture, Golegaon, VNMKV, Parbhani

⁵Ph.D. Scholar, Department of Horticulture (Fruit Science), Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya

Open Access
*Corresponding Author
Shrankhla Mishra*

Article History

Received: 24.12.2025

Revised: 29.12.2025

Accepted: 3.1.2026

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Drought stress is one of the most pervasive and damaging abiotic stresses affecting agricultural production worldwide. It arises when the availability of water in the soil is insufficient to meet the physiological requirements of crops, resulting in reduced growth, impaired development, and significant yield losses. Agriculture accounts for nearly seventy per cent of global freshwater withdrawals, making crop production highly sensitive to fluctuations in water availability. In rainfed agricultural systems, which dominate large areas of Asia, Africa, and parts of the Americas, drought remains the primary cause of yield instability and food insecurity. Even in irrigated regions, increasing competition for water resources and declining groundwater levels have intensified the vulnerability of cropping systems to water stress.

Climate change has further exacerbated the severity and frequency of drought events. Rising temperatures increase evapotranspiration rates, while altered precipitation patterns lead to prolonged dry spells and erratic rainfall distribution. These changes pose serious challenges to traditional farming practices and necessitate the development of adaptive strategies to sustain crop productivity. Drought stress not only affects crop yield but also influences soil health, nutrient availability, and ecosystem stability, thereby threatening the long-term sustainability of agricultural systems.

Plants subjected to drought experience a complex cascade of physiological and biochemical disturbances. Reduced soil moisture limits water uptake by roots, leading to loss of cell turgor, stomatal closure, and reduced photosynthetic activity. Prolonged stress disrupts metabolic processes, accelerates senescence, and ultimately compromises reproductive development. The magnitude of drought impact varies depending on crop species, growth stage, soil type, and management practices, highlighting the need for context-specific solutions.

Agronomic strategies offer practical and cost-effective approaches to mitigate drought stress at the field level. Unlike genetic interventions that require long development timelines, agronomic practices can be implemented immediately and adapted to local conditions. These strategies aim to enhance soil water retention, improve water use efficiency, reduce evapotranspiration losses, and strengthen crop resilience to water deficit. Practices such as conservation tillage, mulching, optimized irrigation scheduling, crop diversification, and nutrient management play a crucial role in reducing drought-induced yield losses.

In recent years, the integration of traditional agronomic knowledge with modern technologies such as precision agriculture, soil moisture sensing, and decision support systems has opened new avenues for drought mitigation. Additionally, biological approaches involving beneficial soil microorganisms and organic amendments have gained attention for their potential to improve soil structure and plant stress tolerance. This article provides a comprehensive review of agronomic strategies

for mitigating drought stress in crops, emphasizing their physiological basis, practical implementation, and role in achieving sustainable agricultural productivity under water-limited conditions.

1. Physiological and Biochemical Responses to Drought

Plants respond to drought stress through a suite of morphological, physiological, and biochemical changes. Stomatal closure is an early drought response that reduces transpiration and conserves water but also limits carbon dioxide uptake, thereby reducing photosynthesis. At the cellular level, drought induces osmotic stress, oxidative stress due to reactive oxygen species (ROS), and metabolic imbalance. Osmotic adjustment, through accumulation of proline and soluble sugars, helps maintain cell turgor and stabilize proteins and membranes under water-deficient conditions. Antioxidant enzymes such as superoxide dismutase and catalase play roles in scavenging ROS generated during stress. Understanding these responses underpins the development of agronomic strategies that support crop resilience.

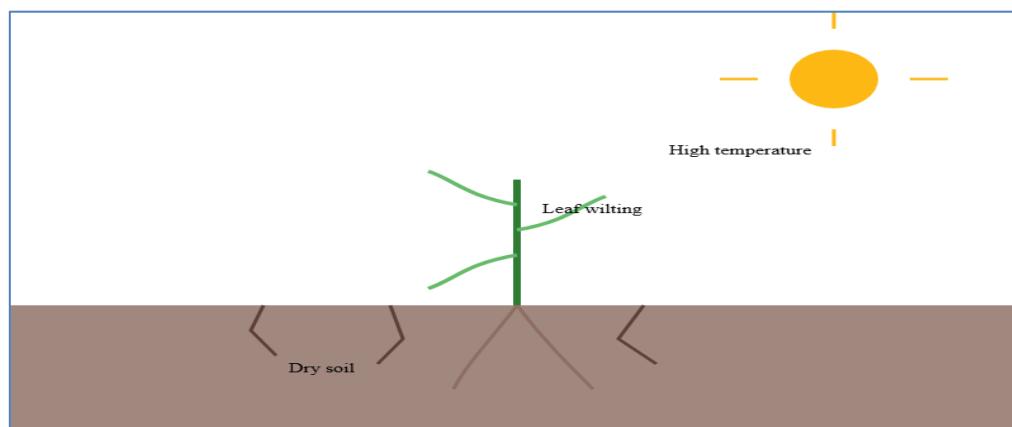


Figure 1. Colour illustration depicting the effects of drought stress on crops, including high temperature exposure, leaf wilting and dry soil conditions.

2. Soil Management Practices

2.1 Soil Moisture Conservation

Maintaining soil moisture is fundamental in drought mitigation. Soil management practices aim to enhance water retention and infiltration while reducing evaporation:

No-till and Reduced Tillage

No-till practices reduce soil disturbance, leading to increased organic matter retention and improved soil structure, which enhances water infiltration and storage. These practices also protect surface residues that reduce evaporation from the soil surface.

Mulching

Organic or synthetic mulch layers on the soil surface reduce evaporation, regulate soil temperature, and suppress weeds. Mulches help conserve moisture during prolonged dry spells, making water available to crops for longer durations.

Soil Amendments

Inorganic and organic soil amendments, including biochar, compost, and humic acids, enhance soil water holding capacity and improve aggregate stability. Recent studies also show that humic acid application can improve physiological responses in crops like maize and sorghum under drought stress.

3. Crop Selection and Genetic Strategies

3.1 Drought-Tolerant and Early-Maturing Varieties

Selecting drought-tolerant or early-maturing varieties is a fundamental agronomic strategy. These cultivars complete crucial phenological stages before severe water stress occurs and generally maintain yield stability under limited water conditions. Many breeding programs now emphasize drought tolerance alongside other agronomic traits.

3.2 Breeding and Genetic Improvement

Advanced breeding techniques, including marker-assisted selection and genomic tools, facilitate the development of cultivars with enhanced drought tolerance. Molecular approaches such as quantitative trait loci (QTL) mapping and CRISPR-based editing are enabling precise modifications in drought-related traits, although their field deployment is still emerging.

4. Irrigation Management

Optimizing water use in irrigation is crucial in drought-prone systems:

Deficit Irrigation

Applying less than the full crop water requirement at specific growth stages (deficit irrigation) can improve water use efficiency and maintain productivity by prioritising limited water for critical periods.

Drip and Precision Irrigation

Drip irrigation delivers water directly to the root zone, minimizing evaporation and distribution losses. Precision irrigation based on real-time crop water status and soil moisture sensors improves water application efficiency.

Bio irrigation

Emerging concepts like bio irrigation using soil-dwelling organisms or deep-rooted intercropped species can redistribute soil water and improve moisture availability. Though still under research, these biological systems show promise in arid environments.

5. Crop Establishment and Management Practices

Effective crop establishment directly influences water use efficiency:

5.1 Planting Date and Population Management

Adjusting planting dates to align with periods of increased soil moisture availability can avoid peak drought stress during sensitive crop growth stages. Optimizing plant population and row spacing enhances light interception and reduces competition for water.

5.2 Crop Rotation and Intercropping

Crop rotations and intercropping systems with deep-rooted species can improve overall system water use. For example, deep-rooted legumes can extract moisture from deeper soil layers, benefiting subsequent shallow-rooted crops through hydraulic lift.

6. Nutrient and Hormonal Management

Balanced nutrient management supports drought resilience. Adequate macro- and micronutrient supply ensures optimum physiological functioning. For instance, potassium enhances stomatal regulation, whilst micronutrients like boron and selenium influence stress tolerance pathways. The use of exogenous phytohormones such as abscisic acid and salicylic acid helps modulate stress signalling and physiological adjustments.

7. Biological and Microbial Interventions

Plant growth-promoting rhizobacteria (PGPR) and other soil microbes enhance drought tolerance by modulating hormone levels, improving nutrient cycling, and increasing root surface area. PGPRs have demonstrated efficacy in improving plant water relations and stress resilience across various crops.

8. Integration with Precision Agriculture

Precision agriculture tools such as soil moisture sensors, remote sensing, and decision support systems optimize water application and

agronomic interventions. These technologies enable site-specific management, reducing water waste and improving crop responses under drought.

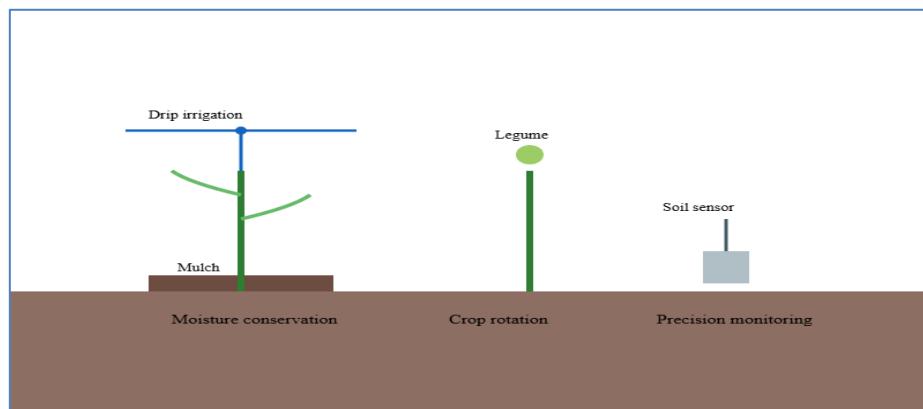


Figure 2. Colour schematic illustrating major agronomic strategies for mitigating drought stress, including mulching, drip irrigation, crop rotation and soil moisture sensing.

9. Comparative Table of Agronomic Drought Mitigation Strategies

Strategy Category	Examples	Primary Benefits
Soil Management	No-till, Mulching, Soil amendments	Enhanced soil moisture retention
Crop Selection	Drought-tolerant varieties	Yield stability under water deficit
Irrigation	Drip, deficit irrigation	Efficient water utilization
Planting Practices	Adjusted planting window, spacing	Avoidance of peak stress
Crop System Design	Rotation, intercropping	Improved water capture
Nutrient Management	Balanced fertilization	Maintained physiological function
Biological	PGPR inoculation	Enhanced stress tolerance
Precision Agriculture	Soil moisture sensors	Targeted management

CONCLUSIONS

Agronomic strategies for mitigating drought stress in crops are multifaceted, involving soil and water management, crop and genetic selection, precise nutrient and microbial interventions, and digital tools for efficient decision making. An integrated approach that combines traditional agronomy with modern technologies and biological insights offers the most promise for improving crop resilience to drought. Continued research and farmer education are essential for translating scientific advancements into practical, scalable solutions that contribute to sustainable agricultural systems in drought-prone regions.

REFERENCES

A review on different priming strategies to mitigate abiotic stress in plants. *Discover Applied Sciences*. 2025.

Enhancing drought resilience in crops: mechanistic approaches. *PubMed*.

Phytohormonal strategies for managing crop responses to abiotic stresses. *Discover Plants*. 2024.

Rajanna GA, Suman A, Venkatesh P. Mitigating Drought Stress Effects in Arid and Semi-Arid Agro-Ecosystems through Bioirrigation Strategies. *Sustainability*. 2023.

Soujanya B, Gurjar DS. Water-efficient crop production: Agronomic strategies for drought-prone areas. *Int J Res Agron*. 2024;7(12):187-196.