Agrospheres: e- Newsletter, (2025) 6(9), 46-48

Article ID: 803

GIS & Remote Sensing: Revolutionizing Crop Monitoring, Soil Mapping, and Climate-Smart Agriculture

Rita Fredericks

CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Corresponding Author Rita Fredericks

Article History

Received: 11.09.2025 Revised: 16.09.2025 Accepted: 21.09.2025

This article is published under the terms of the <u>Creative Commons</u> Attribution License 4.0.

INTRODUCTION

Agriculture is increasingly making use of new technology to improve productivity, sustainability, and resilience. Of these innovations, Geographic Information Systems (GIS) and Remote Sensing (RS) have been key catalysts of change for precision agriculture, resource management, and climatesmart agriculture. These technologies allow farmers, researchers, and policymakers to base decisions on accurate, timely, and spatially explicit data on agricultural landscapes. By combining these technologies, agriculture can maximize inputs, enhance yields, save resources, and reduce risks related to climate variability.

Knowing GIS and Remote Sensing Remote Sensing (RS)

Remote sensing means collecting information on the Earth's surface without direct physical contact, mainly by using satellites, drones, aircraft, or other aerial systems. RS acquires information through optical sensors (visible and near-infrared light), thermal sensors (heat radiation), and radar sensors (microwave energy) to generate detailed information about the surroundings. In agriculture, RS is extensively utilized for monitoring crop development, measuring soil moisture, identifying nutrient deficiencies, mapping pest and disease occurrences, and estimating yield potential. For instance, vegetation indices derived from satellite imagery, like the Normalized Difference Vegetation Index (NDVI), enable farmers to monitor plant health across extensive areas cost-effectively. Multispectral cameracarrying drones deliver high-resolution, field-specific data to support precision interventions like variable-rate fertilization and irrigation.

Geographic Information System (GIS)

GIS is a computer system for capturing, storing, managing, analyzing, and displaying spatial and geographic data. In farming, GIS enables the merging of various data layers—e.g., soil type, terrain, rainfall regime, temperature, crop pattern, and land use—into one system. The merging enables farmers and agronomists to determine appropriate crop areas, maximize input use, schedule irrigation, and track environmental effects. For example, GIS can assist in determining management zones on a field to allow for specific application of nutrients, enhanced efficiency, and less environmental contamination.

GIS and RS Integration in Agriculture

Together, GIS and RS create a robust platform for precision farming, resource management, and climate-resilient agriculture:

Precision Farming: Farmers can use spatial and temporal data on soils and crop performance to apply fertilizers, pesticides, and water more precisely, minimizing inputs and maximizing output.

Soil and Water Management: RS measures soil moisture content and erosion vulnerable areas, and GIS maps these areas to design irrigation or soil conservation strategies.

Crop Monitoring and Yield Estimation: Satellite imagery offers large-scale crop health condition measures, whereas GIS combines historical data to predict yields and identify anomalies.

Climate-Smart Agriculture: GIS and RS assist in climate change vulnerability assessment, simulation of future scenarios, and adaptation planning, e.g., choosing drought-resistant varieties or varying sowing dates.

Disaster Management: Flash flood, drought, or pest warning systems are heavily dependent on timely RS data processed within GIS environments for strategizing timely intervention.

Benefits of GIS and Remote Sensing in Agriculture

- Improved Decision-Making: Offers precise, data-based inputs for field-level and regional planning.
- Resource Efficiency: Maximizes water, fertilizer, and pesticide utilization, minimizing waste and environmental effects.
- ✓ Risk Mitigation: Tracks biotic and abiotic stresses, enabling farmers to predict and react to adversity.
- ✓ **Sustainability:** Enforces environmentally friendly practices through monitoring land use dynamics, soil erosion, and biodiversity effects.
- ✓ **Scalability:** Facilitates small-scale farmers and policymakers to receive usable information for local and regional planning.

Crop Monitoring Applications

Impactful crop monitoring is essential to maximize production, minimize losses, and provide sustainable agriculture. GIS and RS integration offer farmers timely, precise, and spatially explicit data for data-driven decision-making. The major applications are:

Vegetation Health Assessment

Satellite or drone-based sensors can measure vegetation indices like the Normalized

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Soil Adjusted Vegetation Index (SAVI) to measure the health of the plants. These indices can identify early signs of stress due to nutrient deficiencies, water stress, infestation by pests, or diseases so that farmers can take remedial action before actual loss of yield.

Yield Prediction

By integrating RS imagery with weather data, past yield records, and crop growth models, GIS platforms can make estimates of crop yields at field, district, or regional scales. Reliable yield forecasts aid in market planning, supply chain management, and monitoring of food security so that governments and agribusinesses can devise storage, transport, and pricing plans accordingly.

Irrigation Management

Soil moisture content, evapotranspiration rate, and crop water demand can be tracked with the help of RS. GIS compiles this data to generate field-level irrigation timetables, which control precision irrigation systems and also save water in water-deficient areas. Such RS-based data-driven irrigation minimizes overwatering, avoids nutrient leaching, and also improves water-use efficiency.

Pest and Disease Surveillance

RS identifies pest or pathogen-induced changes in crop reflectance. When used in conjunction with GIS, it facilitates mapping of outbreaks over fields or areas. This makes possible controlled interventions where pesticide use is reduced, costs are saved, and environmental footprint is minimized. For instance, detection of locust swarms or fungal infestations early on can enable early control interventions.

Soil Mapping and Management

Soil is a basic resource controlling crop growth, yield, and sustainability. GIS and RS supply means to comprehend, monitor, and manage soil resources better:

Soil Type Mapping

RS platforms can obtain data on soil color, texture, moisture, and organic matter content, while drones offer high-resolution imagery for localized assessment. GIS combines these datasets to produce fine-scale maps of soil type, which assist farmers to choose appropriate crops, design rotations, and optimize input use based on soil attributes.

Nutrient Management

Soil nutrient status is frequently not consistent across a field. GIS permits the generation of

fertility maps by integrating RS-extracted vegetation health information with soil tests. Site-specific fertilizer application is made possible, and crops obtain the appropriate nutrients at the appropriate time, while minimizing over-application, runoff, and environmental contamination.

Monitoring of Erosion and Degradation

RS images are able to identify soil erosion trends, salinization, and land degradation with time. GIS systems map these hotspots and monitor trends, which aid in planning conservation practices like contour farming, cover cropping, or terracing. aids sustainable land management and the preservation of long-term soil health.

Land Suitability Analysis

By integrating soil characteristics, topography, and climate information within GIS, farmers and planners can evaluate land suitability for various crops, irrigation schemes, or agroforestry systems. It minimizes risk, enhances productivity, and facilitates climate-resilient agriculture.

Climate-Smart Agriculture (CSA)

Climate-smart agriculture (CSA) aims to develop agricultural productivity while improving climate change resilience as well as lowering greenhouse gas emissions. GIS and Remote Sensing (RS) can be an integral part in realizing these goals through accurate spatial and temporal data for intelligent decision-making. Major contributions are:

Weather Forecasting and Risk Assessment

High-resolution RS data, along with GIS, is used to make precise predictions of droughts, floods, heatwaves, and other extreme events. Early warning systems based on this data enable farmers to undertake proactive adaptation measures like changing the dates of sowing, choosing resistant crop species, and scheduling water management interventions.

Carbon Sequestration Monitoring

RS technologies quantify vegetation cover, biomass, and soil carbon stocks, enabling assessment of carbon sequestration potential in agroforestry systems, forests, and croplands. GIS combines this information to monitor mitigation activities, assess the effect of land-use transitions, and inform climate policies.

Resource Optimization

Decision support systems based on GIS assist farmers to maximize crop choice, planting calendars, and irrigation management according to climatic factors, soil characteristics, and water supplies. Such precision reduces wastage of resources, increases stability in the yield, and brings farm practices in line with climate adaptation objectives.

Disaster Management and Adaptation Planning

GIS and RS offer spatial data for hazard mapping and planning in response to disasters. Farmers and policymakers can map risky locations, develop climate-resilient cropping patterns, and adopt mitigation strategies, lessening the negative impacts of climate variability.

Challenges and Future Potential

Even as they hold tremendous potential for transformation, the dissemination of GIS and RS is plagued by a number of challenges:

- ✓ **High Upfront Fees:** New satellite imaging, drones, and GIS software are costly for smallholder farmers.
- ✓ **Need for Technical Skills:** Proper utilization of these technologies requires skills in data analysis, remote sensing, and GIS software.
- ✓ **Poor Accessibility in Rural Areas:** Internet connection and high-resolution data availability might be poor in rural areas.

Nevertheless, a number of advances are enhancing accessibility and ease of use:

- ✓ Low-Cost UAVs and Sensors: Low-cost UAVs with multispectral cameras enable field-level surveillance at reduced expenses.
- ✓ **Open-Source GIS Software:** Powerful mapping and analysis software like QGIS is available for free without any licensing costs.
- ✓ Mobile-Based Remote Sensing Platforms: Mobile-based apps and GIS interfaces make decision support and real-time data accessible to farmers in the fields itself.

CONCLUSION

GIS and Remote Sensing are transforming agriculture, taking it from conventional practices to precision and climate-resilient systems. Through real-time information on crop health, soil health, water status, and environmental conditions, these technologies enable farmers to maximize the use of resources, improve productivity, and respond to climate variability. As technology is now more within the reach of finances and availability, GIS and RS will become integral to sustainable agriculture, enhancing food security, environmental management, and resilience for the increasingly populated world.