

Enhancing Wheat Yield through Zero Tillage Technology

Deepak Laxman Katgar

M.Sc. (Ag.) Agronomy,
Mahatma Jyoti Rao Phoole
University, Jaipur Rajasthan
(Mahatma Jyoti Rao Phoole
College of Agriculture and
Research)- 302019

*Corresponding Author

Deepak Laxman Katgar*

Article History

Received: 2.12.2025

Revised: 6.12.2025

Accepted: 11.12.2025

This article is published under the
terms of the [Creative Commons
Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Wheat (*Triticum aestivum L.*) occupies a central position in global agriculture, particularly in South Asia, where it forms a major component of food security systems. In intensive rice-wheat cropping systems, conventional tillage practices have resulted in declining soil health, groundwater depletion, increased production costs, and delayed wheat sowing due to late harvesting of rice. These challenges have necessitated the adoption of resource-conserving technologies.

Zero tillage technology, a key component of conservation agriculture, offers a promising solution by eliminating repetitive tillage operations and allowing timely sowing of wheat. By reducing soil disturbance and retaining crop residues, zero tillage improves soil structure, enhances moisture conservation, and increases input-use efficiency, leading to improved wheat yield and profitability.

2. Concept of Zero Tillage Technology

2.1 Definition

Zero tillage refers to a crop establishment technique in which wheat seeds are sown directly into undisturbed soil without prior land preparation. Specialized zero-till seed drills place seeds and fertilizers in narrow slots while maintaining soil cover with residues from the previous crop.

2.2 Principles of Zero Tillage

- Minimal or no soil disturbance
- Permanent soil cover through crop residues
- Crop diversification and rotation
- Efficient use of inputs such as water, nutrients, and energy

These principles collectively improve soil health and system productivity.

Source: <https://csisa.org>

3. Mechanisms of Yield Enhancement under Zero Tillage

3.1 Timely Sowing of Wheat: Zero tillage enables earlier sowing of wheat, particularly after rice harvest, by eliminating time-consuming land preparation. Timely sowing allows wheat to escape terminal heat stress, resulting in better tillering, grain filling, and higher yields.

3.2 Improved Soil Physical Properties: Reduced soil disturbance maintains soil aggregates, increases porosity, and improves root penetration. Over time, zero tillage enhances soil structure, reduces compaction, and increases water infiltration.

3.3 Enhanced Soil Moisture Conservation: Surface retention of crop residues reduces evaporation losses, moderates soil temperature,

and improves moisture availability during critical growth stages of wheat, especially in moisture-stressed environments.

3.4 Improved Nutrient Use Efficiency: Zero tillage promotes gradual nutrient release from decomposing residues and reduces nutrient losses through erosion and runoff. Enhanced microbial activity improves nutrient cycling and availability.

4. Agronomic Practices for Zero Tillage Wheat

4.1 Land Preparation and Sowing: In zero tillage, wheat is sown using zero-till seed drills immediately after harvest of the preceding crop. Proper calibration of seed drills ensures uniform seed depth and spacing.

Source: <https://csisa.org>

4.2 Residue Management: Retention of crop residues (especially rice straw) on the soil surface is critical. Residues act as mulch, improving soil moisture, suppressing weeds, and enhancing soil organic carbon.

4.3 Weed Management: Effective weed management is essential under zero tillage due to the absence of mechanical weed control. Integrated weed management involving herbicides, crop rotation, residue mulch, and competitive cultivars is recommended.

4.4 Nutrient Management: Balanced fertilization based on soil testing is crucial. Placement of fertilizers through zero-till drills improves nutrient use efficiency and reduces losses.

4.5 Irrigation Management: Zero tillage reduces irrigation requirements by improving soil moisture retention. Scheduling irrigation at critical growth stages enhances water productivity.

5. Impact of Zero Tillage on Wheat Yield

Numerous field studies have demonstrated that zero tillage either maintains or increases wheat yield compared to conventional tillage. Yield improvements are primarily attributed to timely sowing, better soil moisture availability, and improved nutrient uptake. In rice–wheat systems, zero tillage wheat often records yield increases of 5–15% over conventional practices, particularly under delayed sowing conditions.

6. Economic Benefits of Zero Tillage Technology

6.1 Reduction in Cost of Cultivation: Zero tillage significantly reduces the cost of cultivation by eliminating repeated land preparation operations such as ploughing and harrowing. This leads to substantial savings in fuel, labor, and machinery use. Reduced operational expenses lower overall production costs, thereby directly increasing net farm

income and improving economic sustainability for wheat farmers.

6.2 Improved Profitability: Zero tillage technology enhances profitability by substantially lowering input costs while maintaining or improving wheat yields. Timely sowing, better soil moisture conservation, and improved nutrient use efficiency contribute to stable or higher productivity. As a result, farmers achieve higher benefit–cost ratios compared to conventional tillage, making zero tillage an economically viable and attractive cultivation practice.

6.3 Energy Efficiency: Zero tillage reduces the number of tractor operations by eliminating conventional land preparation practices, resulting in lower fuel consumption and energy use. This improved energy efficiency decreases production costs and significantly reduces greenhouse gas emissions. Consequently, zero tillage emerges as an environmentally friendly and energy-efficient technology for sustainable wheat cultivation.

7. Environmental and Soil Health Benefits

7.1 Soil Organic Carbon Sequestration: Zero tillage promotes soil organic carbon sequestration by minimizing soil disturbance and retaining crop residues on the soil surface. Decomposing residues add organic matter, enhance microbial activity, and improve soil structure and fertility. Increased soil organic carbon also helps mitigate climate change by storing atmospheric carbon in the soil.

7.2 Reduction in Greenhouse Gas Emissions: Zero tillage lowers greenhouse gas emissions by reducing fuel consumption associated with repeated tillage operations, thereby decreasing carbon dioxide release from machinery use. Additionally, enhanced soil carbon sequestration under zero tillage further contributes to climate change mitigation, making it an environmentally sustainable agricultural practice.

7.3 Improved Biodiversity: Zero tillage enhances soil biodiversity by creating a stable habitat for microorganisms and soil fauna. Increased microbial activity and greater diversity of earthworms and beneficial organisms improve nutrient cycling, organic matter decomposition,

and soil structure. These processes strengthen ecosystem services and contribute to long-term soil health and sustainable crop production.

8. Constraints in Adoption of Zero Tillage

Despite its advantages, adoption of zero tillage faces several challenges:

- Limited availability of zero-till seed drills
- Initial learning curve for farmers
- Weed resistance due to repeated herbicide use
- Residue management difficulties
- Small landholdings and custom hiring limitations

Addressing these constraints requires institutional support, training, and access to machinery.

9. Role of Extension and Policy Support

Extension agencies play a vital role in promoting zero tillage through demonstrations, farmer field schools, and capacity building programs. Government policies supporting custom hiring centers, subsidies on zero-till drills, and conservation agriculture programs have significantly accelerated adoption.

10. Future Prospects and Way Forward

The future of zero tillage technology lies in integrating it with precision agriculture, site-specific nutrient management, and digital advisory services. Development of improved zero-till machinery, climate-resilient wheat varieties, and integrated weed management strategies will further enhance adoption. Strengthening research-extension-farmer linkages and policy incentives will be critical for scaling up zero tillage technology for sustainable wheat production.

CONCLUSION

Zero tillage technology represents a sustainable and economically viable approach to enhancing wheat yield while conserving natural resources. By enabling timely sowing, improving soil health, reducing production costs, and mitigating environmental impacts, zero tillage contributes to resilient and climate-smart wheat production systems. Wider adoption of zero tillage, supported by appropriate policies, technology

access, and capacity building, can play a crucial role in ensuring food security and sustainable agricultural development.

REFERENCES

El-Shater, T., Mugera, A., & Yigezu, Y. A. (2020). Implications of adoption of zero tillage (ZT) on productive efficiency and production risk of wheat production. *Sustainability*, 12(9), 3640.

Erenstein, O., Farooq, U., Malik, R. K., & Sharif, M. (2008). On-farm impacts of zero tillage wheat in South Asia's rice–wheat systems. *Field Crops Research*, 105(3), 240-252.

Iqbal, M., Khan, M. A., Anwar, M. Z., & Mohsin, A. Q. (2002). Zero-tillage Technology and Farm Profits: A Case Study of Wheat Growers in the Rice Zone of Punjab [with Comments]. *The Pakistan Development Review*, 665-682.

Laxmi, V., Erenstein, O., & Gupta, R. K. (2007). Impact of zero tillage in India's rice-wheat systems.

Tahir, M. A., Sardar, M. S., Quddus, M. A., & Ashfaq, M. (2008). Economics of zero tillage technology of wheat in rice-wheat cropping system of Punjab-Pakistan. *J. Anim. Plant Sci*, 18, 42-46.