

Integrated Nutrient Management with Next-Generation Fertilizers

Rita Fredericks

CEO, Precision Grow (A Unit
of Tech Visit IT Pvt Ltd)

*Corresponding Author
Rita Fredericks*

Article History

Received: 28.11.2025

Revised: 3.12.2025

Accepted: 7.12.2025

This article is published under the terms of the [Creative Commons Attribution License 4.0](#).

INTRODUCTION

Increasing global food demand, declining soil fertility, excessive use of chemical fertilizers, and climate variability have accelerated the need for smarter nutrient management practices. Conventional fertilization often leads to low nutrient-use efficiency (NUE), nutrient losses through leaching, volatilization, and runoff, and long-term degradation of soil biodiversity.

Integrated Nutrient Management aims to combine organic, inorganic, and biological nutrient sources in a judicious manner to ensure long-term soil fertility, sustainability, and profitability. The incorporation of next-generation fertilizers has added precision, efficiency, and environmental safety to INM strategies. These innovative fertilizers are engineered to release nutrients based on crop needs, minimize losses, and improve biochemical interactions between soil, plant, and microbes.

2. Concept and Principles of Integrated Nutrient Management (INM)

2.1 Definition

Integrated Nutrient Management refers to the combined use of chemical fertilizers, organic manures (FYM, compost, crop residues), green manuring, biofertilizers, and modern nutrient technologies to maintain soil fertility and optimize plant nutrition.

2.2 Objectives of INM

- Sustain soil fertility and productivity.
- Improve nutrient-use efficiency.
- Reduce dependence on chemical fertilizers.
- Promote ecological balance and soil biodiversity.
- Minimize environmental pollution.
- Enhance profitability and resource-use efficiency.

Source: <https://agrisearchindia.com>

2.3 Core Principles

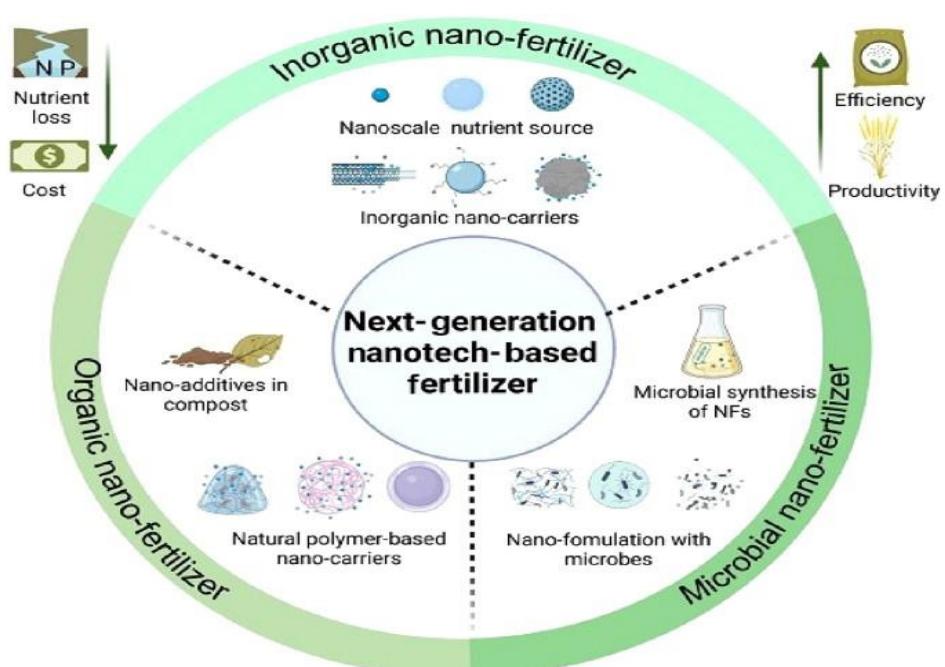
1. Balanced fertilization according to soil-test values.
2. Combination of organic + inorganic + biological sources.
3. Site-specific nutrient management (SSNM).
4. Crop- and variety-specific nutrient scheduling.
5. Recycling of crop residues and farm wastes.
6. Enhancement of soil biological activity.
7. Use of next-generation, efficient nutrient carriers.

3. Next-Generation Fertilizers: Types and Characteristics

Next-generation fertilizers aim to deliver nutrients efficiently, sustainably, and with minimal losses. They combine principles of

nanotechnology, biotechnology, materials science, and precision agriculture.

3.1 Nano-Fertilizers


Nano-fertilizers are nutrient formulations engineered at the nanoscale (1–100 nm). They have higher surface area, controlled release, and better nutrient uptake.

Key Features

- ❖ Slow and targeted nutrient release
- ❖ Higher absorption through stomata and roots
- ❖ Reduction in soil and water contamination
- ❖ Enhanced NUE and reduced fertilizer doses

Examples

- ❖ Nano urea
- ❖ Nano zinc, Nano iron, Nano copper
- ❖ Nano nitrogen and multi-nutrient nano-mixes

Source: <https://link.springer.com>

3.2 Controlled-Release and Slow-Release Fertilizers (CRF/SRF)

These fertilizers release nutrients gradually over weeks or months through polymer coatings, sulfur coatings, or chemically stabilized compounds.

Advantages

- ❖ Reduced volatilization and leaching
- ❖ Fewer split applications
- ❖ Synchronization with crop demand
- ❖ Higher NUE (40–70% improvement)

Examples

- ❖ Polymer-coated urea

- ❖ Sulfur-coated urea
- ❖ UF-based slow-release fertilizers

3.3 Biofertilizers and Microbial Consortia

Biofertilizers contain beneficial microorganisms that fix nitrogen, solubilize phosphorus, mobilize micronutrients, or enhance root growth.

Types

- ❖ **Nitrogen fixers:** Rhizobium, Azotobacter, Azospirillum
- ❖ **Phosphate solubilizers:** PSB (Pseudomonas, Bacillus)
- ❖ **Potassium mobilizers:** Frateuria

- ❖ **Mycorrhizal fungi (AMF):** Enhances water + nutrient uptake
- ❖ **Consortia biofertilizers:** Multi-strain formulations

3.4 Liquid and Nano-Bio-Stimulants

Bio-stimulants contain seaweed extracts, amino acids, humic substances, hormones, peptides, and beneficial microbes.

Functions

- ❖ Enhance root development
- ❖ Improve stress tolerance
- ❖ Boost nutrient absorption
- ❖ Stimulate metabolic and enzymatic activity

3.5 Mineral and Nutrient Fortified Fertilizers

are advanced formulations enriched with essential micronutrients such as zinc, boron, and sulfur to correct hidden hunger and support balanced crop nutrition. Examples include **zinc-enriched urea**, **boronated superphosphate**, and **fortified NPK blends**, all designed to enhance nutrient availability and improve crop growth.

3.6 Smart Fertilizers with IoT and Sensor Integration

Smart fertilizers with IoT and sensor integration further optimize nutrient management by using real-time soil and crop data collected through sensors, drones, and AI tools. These technologies enable **variable rate nutrient application (VRA)**, **sensor-based fertigation**, and **automated nutrient delivery** through drip irrigation, ensuring precision, efficiency, and reduced fertilizer losses.

4. Integrated Use of Fertilizers in INM

Integrated use of fertilizers in INM ensures that multiple nutrient sources are applied in balanced proportions to sustain soil fertility and crop productivity. This approach combines organic, inorganic, and biological inputs to improve nutrient availability and efficiency.

4.1 Integration with organic manures enhances soil structure, water-holding capacity, and microbial activity. Organic manures supply essential micronutrients and increase the soil's cation exchange capacity (CEC), supporting long-term fertility.

4.2 Crop residue management (CRM) further enriches the soil. Incorporating cereal residues adds approximately 6–8 kg N, 1.5 kg P, and 10–12 kg K per tonne, boosts soil organic carbon, promotes carbon sequestration, and reduces dependence on external fertilizers.

4.3 Green manuring, using crops like Sesbania, Sunnhemp, and Moong, contributes 40–60 kg N/ha, improves microbial biomass, and enhances

nutrient mineralization, making nutrients more readily available to crops.

4.5 Biofertilizer integration—such as Rhizobium, PSB, Azotobacter, and AMF—promotes nutrient mobilization and improves crop response. Common recommendations include 75% NPK + biofertilizers for pulses and 80% N + biofertilizers + FYM for cereals.

4.6 Next-generation fertilizers like nano urea, nano zinc, and controlled-release formulations provide synergistic benefits when combined with traditional inputs. These strategies can reduce chemical fertilizer use by 20–50%, increase yields by 15–40%, and enhance nutrient-use efficiency by 25–60%.

5. Impact of INM and Next-Generation Fertilizers on Soil and Crop Health

Integrated Nutrient Management (INM) combined with next-generation fertilizers significantly enhances soil quality and crop performance. Soil fertility improves through higher organic carbon levels, increased microbial biomass carbon (MBC), and greater activity of soil enzymes such as dehydrogenase and phosphatase. Nutrient cycling becomes more efficient due to enhanced biological nitrogen fixation, improved phosphorus solubilization and mobilization, and increased availability of essential micronutrients.

Crop productivity and quality also rise, with notable increases in grain, forage, and fruit yields. Enhanced nutrient density, stronger root systems, and better canopy development further support overall crop vigor. Environmentally, INM reduces nitrate leaching, lowers greenhouse gas emissions, and minimizes risks of eutrophication. It also decreases fertilizer residue contamination, promoting cleaner soils and more sustainable agricultural systems.

6. Role in Climate-Smart and Sustainable Agriculture

Integrated nutrient management with smart fertilizers supports climate resilience through:

- Efficient nutrient delivery under erratic rainfall
- Reduction in carbon and nutrient footprints
- Enhanced soil carbon sequestration
- Increased tolerance to drought, heat, and salinity
- Greater adaptability in diverse agroecosystems

7. Challenges and Limitations

Despite its many benefits, INM using next-generation fertilizers also suffers from some

practical barriers: the major problem is the awareness about nano- and controlled-release fertilizers among farmers. Advanced inputs have a higher initial cost, thus limiting the rate of adoption. Most technologies have not had sufficient large-scale field testing. Farmer caution will require strong policy support, quality certification, and regulatory mechanisms to instill confidence on reliability of products, especially commercial biofertilizers, which often show inconsistency in quality. Success also depends on skilled labor, technical training, and continuous monitoring, conditions that are not easily satisfied in all farming communities.

8. Future Outlook

In the future, nutrient management will be moving toward precision and biotechnology-driven solutions. AI nutrient recommendation systems, CRISPR-developed nutrient-efficient varieties, and bioengineered microbial inoculants will enhance nutrient-use efficiency. Smart nutrient packaging and microencapsulation will improve controlled release, while enzyme-enhanced on-farm composting will boost organic nutrient availability. Integration with hydroponics and vertical farming will further strengthen sustainable high-efficiency INM systems.

CONCLUSION

Integrated Nutrient Management, in combination with next-generation fertilizers, offers a balanced, efficient, and environmentally friendly approach to modern nutrient management. This combination allows for long-term soil fertility, increased nutrient-use efficiency, increased

yields, and reduced environmental footprint. As agriculture is heading toward climate-smart and precision-based systems, INM enriched with nano-fertilizers, controlled-release composites, bio-stimulants, and microbial solutions are increasingly playing the lead role toward long-term sustainability and food security.

REFERENCES

Ait-El-Mokhtar, M., Balestrini, R. M., & Baslam, M. (2025). Innovative solutions for next-generation fertilizers. *Frontiers in Sustainable Food Systems*, 9, 1711141.

Arora, P. K., Tripathi, S., Omar, R. A., Chauhan, P., Sinhal, V. K., Singh, A., ... & Singh, V. P. (2024). Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. *Microbial cell factories*, 23(1), 254.

Bhattacharya, S., & Pandey, M. (2024). Pcfirms: Smart next-generation approach for precision crop and fertilizer recommendations using integrated multimodal data fusion for sustainable agriculture. *IEEE Transactions on Consumer Electronics*, 70(3), 6250-6261.

Nayak, B. B., Mrudula, D., Prasanna, T., & Bhupal, G. (2024). New Generation Technologies for Precision Nutrient Management for Sustainable Agriculture. *Current Trends in Agriculture & Allied Sciences*; SP Publishing: Delhi, India.