

Sustainable Weed Management Using Cover Crops and Mulching

Harishankar^{1*},
Anil Kumar²,
Rita Fredericks³

¹Assistant Professor
(Agronomy), College of
Agriculture and Research
Station, Jashpur (C.G.) Pin Code
-496225, Indira Gandhi Krishi
Vishwavidyalaya, Raipur (C.G.)

²Assistant Professor, Department
of Agronomy, Eklavya
University Damoh- Madhya
Pradesh-470661

³CEO, Precision Grow (A Unit
of Tech Visit IT Pvt Ltd)

*Corresponding Author
Harishankar*

Article History

Received: 26. 11.2025

Revised: 2. 12.2025

Accepted: 6. 12.2025

This article is published under the
terms of the [Creative Commons
Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Weeds pose one of the most serious challenges in contemporary agriculture due to their competition with crops for nutrients, water, sunlight, and space, which ultimately reduces yield potential. Traditional methods of weed management usually depend on synthetic herbicides or mechanical tillage or manual weeding. Though effective, the overuse of herbicides results in environmental contamination, selection of resistant weeds, and degradation of soil quality. Likewise, repeated tillage disrupts soil structure and organic matter and enhances erosion risks.

In this regard, sustainable management of weeds places strong emphasis on ecological principles, natural processes, and the restoration of soil health. Of the many environment-friendly practices, cover cropping and mulching have proved to be two of the most effective long-term strategies. They effectively suppress weeds while improving soil fertility, water retention, microbial activity, and overall farm sustainability.

2. Concept of Sustainable Weed Management

Sustainable weed management is centered on integrating cultural, biological, physical, and ecological techniques of weed suppression while maintaining soil health and conserving natural resources. It does not aim at the complete eradication of weeds but rather to reduce weed pressure below economically damaging levels.

Key principles include:

- Improving crop competitiveness
- Improve soil cover, reducing bare land.
- Promoting biodiversity
- Reducing reliance on herbicides
- Protecting beneficial soil organisms
- Maintaining long-term ecological balance
- Central to these are cover crops and mulches, since both prevent weed establishment in a natural manner while positively influencing soil processes.

3. Cover Crops: A Sustainable Weed Suppression Strategy

3.1 What Are Cover Crops?

Cover crops consist of any noncash crop that is grown to protect and cover the soil, especially during fallow. They reduce erosion, increase organic matter content, improve nutrient cycling, and most importantly, they suppress weeds by both competitive and allelopathy effects.

Common cover crops include:

- Legumes: Berseem, clover, cowpea, sun hemp
- Grasses: rye, oats, sorghum–Sudan grass
- Brassicas: Mustard, radish
- Mixed cover crop combinations

3.2 Mechanisms of Weed Suppression by Cover Crops

3.2.1 Physical Suppression

Cover crops are the first line of defense, with their rapid growth and dense canopy shading the soil surface. This reduces the amount of light available for germination of weed seeds, interferes with the photosynthesis of the emerging seedlings, and limits establishment of aggressive weed species. The thick biomass layer acts as a natural mulch to prevent weed emergence.

3.2.2 Resource Competition

further enhances suppression. Cover crops competitively deprive weeds of the basic growth requirements of sunlight, soil nutrients, moisture, and space in the root zone. Their rapid early growth offers a competitive advantage in which the cover crop shades the soil surface and limits

germination and growth of slower-growing weed species.

3.2.3 Allelopathy

One of the most powerful natural mechanisms through which cover crops suppress weeds is allelopathy. Many cover crop species produce allelochemicals, which are bioactive compounds released from roots, leaves, stems, or decomposing residues that inhibit weed seed germination and early seedling growth. These chemicals interfere with the critical physiological processes in the emerging weeds, such as cell division, respiration, and enzyme activity.

For instance, rye produces benzoxazinoids, mustard releases glucosinolates, and sorghum–sudangrass exudes sorgoleone, all acting as natural herbicidal agents. In reducing weed density and vigor, allelopathy minimizes reliance on synthetic herbicides and thus helps in environmentally sustainable weed management.

3.2.4 Soil Temperature Regulation

Dense canopies and surface residues from cover crops buffer the soil from extreme temperature fluctuations by reducing its direct exposure to the sun. This reduces the large daily oscillations in temperature, moderating the micro-environment. Most weed species germinate within a narrow temperature range; thus, the cooler and moderated soil temperatures under cover crops significantly reduce weed emergence and growth. This natural temperature buffering enhances long-term weed suppression and promotes healthier soil conditions.

3.3 Types of Cover Crops for Weed Management

3.3.1 Leguminous Cover Crops: Species such as cowpea, berseem, clover, and sunhemp fix atmospheric nitrogen, improve soil fertility, and produce moderate biomass that is helpful in suppressing weeds.

3.3.2 Grass Cover Crops: Rye, oats, maize stover, and sorghum–sudangrass produce high biomass, providing a very effective physical barrier with strong allelopathic effects against weeds.

3.3.3 Brassica Cover Crops: Mustard and radish break pest cycles, improve soil structure, and suppress weeds through biofumigation.

3.3.4 Mixed Cover Crop Systems: Mixing legumes and grasses maximizes biomass, balances nutrient cycling, enhances weed suppression, and improves soil structure.

3.4 Management of Cover Crops

3.4.1 Establishment: Choose species suitable to climate and season, keep appropriate seed rates to achieve canopy closure, and sow at the appropriate time.

3.4.2 Termination Methods: This can include mowing, roller crimping, cutting, shallow tillage incorporation, or herbicide termination within conservation agriculture.

3.4.3 Termination Timing: Cover crops should be terminated before flowering and peak water demand for maximum biomass production, quick decomposition, and minimum competition with the main crop.

4. Mulching as a Sustainable Weed Control Technique

4.1 What Is Mulching?

Mulching is one of the most valuable sustainable farming methods that involve spreading different organic or inorganic materials on the soil surface with the purpose of inhibiting weeds, saving moisture, protecting the structure of the soil, and

regulating the temperature of the soil. This process creates a physical barrier that inhibits light from reaching the soil particles, thus limiting weed germination. Mulching also improves aeration, prevents soil crusting, and leads to better root growth. Under both

conventional and conservation agriculture, mulching plays a very important role in erosion reduction and improvement in resilience against various soil disturbances.

4.2 Types of Mulches

4.2.1 Organic Mulches: Organic mulches include crop residues such as rice straw, wheat straw, and sugarcane trash, in addition to farmyard manure, compost, sawdust, leaf litter, and green leaves. Organic mulches improve soil aggregation, increase soil organic matter, and enhance microbial and earthworm activity. During decomposition, they release nutrients, mostly nitrogen and carbon, thus increasing soil fertility and contributing to sustainability.

4.2.2 Inorganic Mulches: These include black polyethylene films, silver/white reflective plastic sheets, biodegradable polymer mulches, stones, and gravel. They are highly effective in reducing evaporation, preventing weed growth, and modifying the microclimate around the crop. While they do not add organic matter, they are extremely durable and efficient, especially in horticultural and dryland crops.

4.3 Mechanisms of Weed Suppression by Mulching

Mulches prevent sunlight from reaching the soil, which reduces photosynthesis, inhibiting weed seed germination. In addition, the physical barrier prevents the emergence of weeds by blocking seedlings from penetrating the soil surface. Mulching tends to moderate fluctuations in soil temperature, making conditions for growth less ideal for weeds. Certain organic mulches have allelopathic effects: for instance, eucalyptus leaves, pine needles, and sorghum residues release chemicals that inhibit weeds naturally. Mulching also conserves soil moisture, enabling the crop to establish early dominance over weeds.

4.4 Advantages of Mulching for Sustainable Weed Control

Mulching reduces weed pressure by 60–90%, retains soil moisture by 30–50%, improves soil organic carbon, and enhances microbial diversity. It reinforces the structure of the soil; by reducing erosion, compaction, and the need for herbicides, mulching has a positive effect on crop yield and profit, while being environmentally friendly and an important part of integrated weed management.

5. Comparative Performance: Cover Crops vs. Mulching

Parameter	Cover Crops	Mulching
Weed suppression	High (biomass + allelopathy)	Very high (barrier effect)
Soil organic matter	High	High (organic mulch)
Soil temperature control	Moderate	Strong
Moisture conservation	Moderate-high	Very high
Labour requirement	Medium	Medium-high
Cost	Low–medium	Low–high
Suitability	Seasonal	Year-round

6. Integrated Weed Management Using Cover Crops + Mulching

The combination of cover crops with mulching provides one of the most effective and sustainable integrated methods for managing weeds. This integrated system provides full soil cover continuously, increases organic matter input considerably, and improves weed suppression, both physically and allelopathically. It also promotes better retention of soil moisture and allows for early and healthy crop establishment.

The typical practice consists of the cover crop being grown during the off-season, terminated using methods such as rolling, cutting, or shallow incorporation, and leaving the biomass on the soil surface as mulch. The main crop is then planted with minimum soil

disturbance. This approach gives rise to a natural mulch mat that reduces weed emergence for several weeks to months, decreases dependency on herbicides, and promotes healthier, more resilient cropping systems.

7. Additional Benefits of Cover Crops and Mulching Beyond Weed Control

Cover crops and mulching offer a broad range of agronomic and environmental benefits that go far beyond just weed suppression.

7.1 Improved Soil Health: Cover cropping and mulching improve soil structure, enhance aggregate stability, and increase levels of organic carbon. These practices also enhance microbial biomass, building nutrient cycling and a healthier soil ecosystem.

7.2 Improved Water-Retention Capacity:

Surface evaporation reduction, improved infiltration, and better water distribution in the root zone all contribute to increasing the water-holding capacity of the soil, which favors crop growth during dry periods.

7.3 Reduced Soil Erosion: Mulch layers and cover crop residues protect the soil from the impact of raindrops and surface runoff, thus reducing topsoil loss and maintaining fertility.

7.4 Increased Biodiversity: They create favorable habitats for earthworms, beneficial insects, and soil microorganisms, further improving ecological balance and ensuring natural control over pests.

7.5 Resilience to Climate Change: Cover crops and mulches reduce extreme soil temperature fluctuations, enhance drought tolerance, and contribute to lower greenhouse gas emissions to help farming systems adapt to changing climatic conditions while sustaining productivity.

8. Challenges and Limitations

In spite of the potential benefits, cover cropping and mulching have certain problems. Competition for soil moisture in dry regions may occur when a cover crop is grown, especially when the crop will require the same moisture. There are also risks regarding pests and diseases, since mulch may harbor termites, snails, and other pests. These practices are very labor-intensive to establish, maintain, and terminate. In addition, availability can be limited since crop residues are usually used for fodder. Another challenge is the initial learning curve the farmer has to invest in understanding species selection, timing, and management practices.

9. Best Management Practices for Successful Adoption

Farmers should choose the species of cover crop most suitable for their region and apply sufficient seed rates to allow rapid canopy formation. Mixing legumes with grasses balances the nutrient and biomass benefits. Application rates of 5-10 tons/ha of organic mulch ensure effective weed suppression. Cover crop termination should be done at proper growth stages of development, maintaining minimum soil disturbance in accordance with principles of conservation agriculture. Further integration with crop rotation and reduced use of herbicides enhances sustainability, soil health, and long-term productivity.

CONCLUSION

Sustainable weed management through cover cropping and mulching is an environmentally viable, economically responsive, and farmer-friendly approach. Cover crops and mulching offer several additional benefits, including improved soil fertility, water retention, biodiversity, and long-term productivity, besides effectively suppressing weeds. Cover crops protect the ground with living vegetation, while the mulches provide a durable physical barrier; together, they create a formidable weed management system. The adoption of such practices promotes climate-smart agriculture, sustainable farming practices, and decreased reliance on chemicals to control weeds. Proper planning, training, and integration of cover crops and mulching can turn weed management into a more sustainable and regenerative approach in traditional farming to make it more lucrative.

REFERENCES

Fogliatto, S., Patrucco, L., De Palo, F., Moretti, B., Milan, M., & Vidotto, F. (2021). Cover crops as green mulching for weed management in rice. *Italian Journal of Agronomy*, 16(4), 1850.

Khan, B. A., Nijabat, A., Khan, M. I., Khan, I., Hashim, S., Nadeem, M. A., & Ikram, M. (2022). Implications of Mulching on weed management in crops and vegetable. In *Mulching in agroecosystems: plants, soil & Environment* (pp. 199-213). Singapore: Springer Nature Singapore.

Pfeiffer, A., Silva, E., & Colquhoun, J. (2016). Living mulch cover crops for weed control in small-scale applications. *Renewable Agriculture and Food Systems*, 31(4), 309-317.

Teasdale, J. R. (1996). Contribution of cover crops to weed management in sustainable agricultural systems. *Journal of production agriculture*, 9(4), 475-479.

Teasdale, J. R., Brandsaeter, L. O., Calegari, A. D. E. M. I. R., Neto, F. S., Upadhyaya, M. K., & Blackshaw, R. E. (2007). Cover crops and weed management. *Non-chemical weed management: principles, concepts and technology*, 49-64.