Agrospheres: e- Newsletter, (2025) 6(11), 7-10



Article ID: 817

# Aquaponics: a smart integration of fish farming and crop cultivation

# Anupam Rani Vishnoi

Lecturer, Department of Biology R.S.M. Inter College, Dhampur-246761 (Bijnor) (School Code- 1053)



\*Corresponding Author

Anupam Rani Vishnoi\*

#### **Article History**

Received: 23. 10.2025 Revised: 27. 10.2025 Accepted: 3. 11.2025

This article is published under the terms of the <u>Creative Commons</u> <u>Attribution License 4.0.</u>

## INTRODUCTION

In an era where the global population is rapidly increasing and natural resources are under immense pressure, the need for sustainable and efficient food production systems has never been greater. Traditional agriculture, though vital, often demands large amounts of land, water, and chemical inputs, while conventional fish farming can generate waste and water pollution. To address these challenges, scientists and innovators have developed aquaponics — a smart and eco-friendly integration of aquaculture (fish farming) and hydroponics (soilless plant cultivation).

Aquaponics operates on a simple yet powerful principle of symbiosis: the nutrient-rich waste produced by fish serves as a natural fertilizer for plants, while plants purify the water that returns to the fish tanks. This closed-loop system minimizes waste, conserves up to 90% of water compared to traditional farming, and eliminates the need for synthetic fertilizers. It represents a remarkable example of how technology and ecology can work hand in hand to produce healthy food in a sustainable way.

In recent years, aquaponics has gained global attention as a solution for urban food production, climate-smart agriculture, and resource-efficient farming. From rooftop gardens in cities to community-based greenhouses in rural areas, this integrated approach is transforming the way we think about growing food. Beyond its environmental benefits, aquaponics also offers new economic opportunities for entrepreneurs, researchers, and farmers seeking innovative and profitable methods of production.

This article explores the science, technology, and potential of aquaponics as a modern farming revolution that promises a greener and more self-reliant future for global agriculture.

As cities grow and climate pressures intensify, the race is on for food systems that use fewer resources while producing more nutritious food. Aquaponics answers that call by combining aquaculture (raising fish) with hydroponics (growing plants without soil) in a single, mutually beneficial system. Fish produce nutrient-rich waste that, through microbial conversion, becomes fertilizer for plants; plants then clean the water that returns to the fish tanks. The result is a compact, circular production system that conserves water, reduces external inputs, and can deliver fresh produce close to consumers — ideal for urban rooftops, community projects, restaurants, and research farms.



# How an Aquaponics System Works?

An aquaponics farm has four core elements:

- 1. **Fish Tanks** hold the cultured fish (tilapia, trout, catfish, carp, ornamental species). Fish are fed feed; their waste contains ammonia.
- 2. **Bio filter / Nitrifying Bacteria** converts toxic ammonia first to nitrite then to nitrate (plant-available nitrogen).
- 3. **Grow Beds / Hydroponic Units** plants (leafy greens, herbs, vine crops, some fruiting crops) take up nitrates and other nutrients, purifying the water.
- 4. Water Recirculation System pumps and plumbing return cleaned water to fish tanks; solids management (clarifiers) removes excess waste.

This closed-loop recirculation minimizes water exchange and keeps nutrients cycling between fish and plants, forming the ecological backbone of aquaponics.

Why Aquaponics Matters — Key Benefits Major resource efficiencies. Because water is continuously recirculated, aquaponics systems can use up to 90% less water than conventional soil-based agriculture in comparable production scenarios — a huge advantage in water-stressed regions and cities.

Growing market and investment momentum. The global aquaponics market has grown rapidly—estimates place global market value at roughly USD 1.05–1.10 billion in 2023–2024, with projections to exceed USD 1.2 billion by 2025 and continue expanding strongly through the decade. This growth reflects rising interest from urban developers, restaurants, and commercial growers.

High productivity per unit area. Several comparative studies and practitioner reports suggest aquaponics can yield significantly more food per area than open-field systems — some estimates suggest multiple-fold increases (figures vary by crop and system design). For leafy greens, annual yields per square meter may exceed what is typical in conventional outdoor production, especially when vertical or multitiered racks are used.

Local, fresh, low-chemical produce. Aquaponics produce typically requires no soilapplied pesticides and minimal synthetic fertilizer, meeting growing consumer demand for local, sustainable, and low-residue food.

Circular, educational and social value. Aquaponics projects often double as community hubs, educational platforms, and food-security

solutions — from university rooftop farms to shelter-run systems that supply kitchens and training programs. Real-world projects show aquaponics' social value for local food resilience and skills training.

## Challenges — what needs to be solved

Aquaponics is not a turnkey silver bullet; several technical and economic challenges persist:

- Nutrient balancing. Fish waste provides nitrogen well, but other nutrients (potassium, calcium, iron) can be limiting for certain crops researchers are exploring supplementation strategies and decoupled systems to balance plant nutrition.
- Water quality management. Maintaining dissolved oxygen, pH, temperature, and solids control is essential for both fish health and plant uptake. Failures in monitoring/controls can quickly cascade.
- Economic scale and energy use. Small hobby systems are low-cost; scaling commercially often requires capital for climate control, pumps, and monitoring energy and supply-chain costs influence viability.
- Technical expertise gap. Operating a balanced aquaponics system demands cross-disciplinary skills (aquaculture, microbiology, horticulture, engineering), which can be a barrier for new adopters.

Recent critical reviews stress that while aquaponics offers clear environmental benefits, achieving consistent, economically competitive production at scale requires continued innovation in nutrient management, automation, and system design.

# **Innovations & Current Trends (2024–2025)**

• **Decoupled aquaponics:** Newer designs separate fish and plant water loops to allow independent optimization (easier nutrient supplementation for plants, improved fish welfare). Recent studies report comparable or higher yields with better nutrient control.

**Smart monitoring and automation:** IoT sensors for pH, dissolved oxygen, ammonia, and temperature plus automated dosing and aeration are increasingly common, lowering operational risk and labor needs.

Urban hospitality and hotel farms: Hotels and restaurants are installing on-site aquaponics to supply kitchens with hyperlocal produce — examples include highprofile urban installations that also support sustainability branding.



• Community and social programs: Nonprofits and shelters use small-scale aquaponics to supply food and provide vocational training, showing strong socialinclusion potential.

### **Case Studies**

- Fairmont Singapore & Swissôtel The Stamford: An urban aquaponics initiative supporting local produce for hotel restaurants and aligning with Singapore's food-security goals. It illustrates hospitality-sector uptake of urban aquaponics.
- Community "agrihood" projects (U.S. examples): Shelters and community centres have launched aquaponics to offset food costs and provide training pathways demonstrating social impact beyond pure production.
- Small-scale cultural projects (e.g., Oko Farms, Brooklyn): Community growers use aquaponics to reconnect diasporic communities with culturally important crops and provide local market produce.

# **Practical Recommendations for New Adopters**

- 1. **Start small, plan for scale.** Begin with a pilot that lets you master water quality and nutrient cycling before increasing footprint.
- Use modular/decoupled design if crop nutrition is critical. Decoupled setups allow tailored nutrient additions and easier troubleshooting.
- 3. **Invest in monitoring and controls.** Sensors and basic automation reduce risk and labor, speeding learning curves.
- 4. Choose compatible fish and crops. Leafy greens and herbs are low-nutrient-demand crops ideal for many systems; tilapia and carp are common robust fish choices.
- 5. Plan for energy and backup systems. Pumps and aeration are mission-critical plan redundancy and consider renewable energy for long-term resilience.

## **Future Outlook**

With rising market interest (current market value ~USD 1.05-1.2 billion and projected strong CAGR through the 2020s), technological improvements in automation, nutrient management, and energy efficiency are likely to make aquaponics increasingly competitive in urban and peri-urban niches. Continued research (notably 2024–2025 reviews) highlights areas where science and entrepreneurship must profiles. collaborate: optimizing nutrient

lowering capital and energy costs, and demonstrating robust business models.

#### **CONCLUSION**

Aquaponics sits at the intersection of ecology and engineering — an elegantly circular system that converts fish waste into plant food while greatly reducing water use and bringing production closer to consumers. It is not without technical and economic challenges, but current market momentum, research advances, and diverse real-world pilots show aquaponics is moving from novelty to viable niche for sustainable urban and small-scale commercial agriculture. For cities facing land and water and for communities constraints, resilient local food systems, aquaponics offers a smart, practical, and increasingly solution.

# **REFERENCES**

- Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (2019). Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer Nature.
- FAO. (2021). Small-scale Aquaponic Food Production: Integrated Fish and Plant Farming. Food and Agriculture Organization of the United Nations, Rome.
- Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2020). FAO Technical Paper 589: Small-scale Aquaponic Food Production. FAO, Rome.
- Love, D. C., Fry, J. P., Li, X., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. *Aquaculture*, 435, 67–74.
- Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. *Agricultural Water Management*, 178, 335–344.
- Graber, A., & Junge, R. (2009). Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. *Desalination*, 246 (1–3), 147–156.



- ResearchAndMarkets. (2024). Global Aquaponics Market Report 2024–2030. Research and Markets, Dublin, Ireland.
- MarketsandMarkets. (2023). Aquaponics Market by Equipment, Component, and Application Global Forecast to 2030. Markets and Markets Research Pvt. Ltd.
- Goddek, S., & Körner, O. (2020). A fully coupled aquaponic system for hydroponic tomato production. *Aquacultural Engineering*, 89, 102053.
- Bittsanszky, A., Uzinger, N., Gyulai, G., Mathis, A., Junge, R., Kotzen, B., & Komives, T. (2016). Nutrient supply of plants in aquaponic systems. *Ecocycles*, 2(2), 17–20.
- Palm, H. W., Knaus, U., Appelbaum, S., Strauch, S. M., & Kotzen, B. (2019). Towards commercial aquaponics: A review of systems, designs, scales, and economics. *Reviews in Aquaculture*, 11(4), 907–941.

- Rakocy, J. E., Bailey, D. S., Shultz, R. C., & Thoman, E. S. (2004). *Update on tilapia and vegetable production in the UVI aquaponic system*. University of the Virgin Islands Agricultural Experiment Station, St. Croix.
- Bakar, N. H. A., Hasan, H. A., & Juahir, H. (2021). Aquaponics system for sustainable agriculture: A review of recent developments. *Environmental Technology & Innovation*, 24, 101897.
- Krishnan, S., & Wahid, Z. A. (2022). Recent advances in integrated aquaponic systems: Sustainable food production through water recycling. *Journal of Environmental Management*, 312, 114918.
- United Nations Environment Programme (UNEP). (2023). Sustainable Urban Food Systems: Aquaponics as a Green Innovation. UNEP Technical Report, Geneva.