Agrospheres: e- Newsletter, (2025) 6(11), 4-6

Article ID: 816

Vertical Farming & Hydroponics: The Future of New Farming for Sustainable Food Security

Swati Sharma¹ and Prof. S. N. Sharma²

1-HOD, Agribusiness,
Economics & Finance,
Agribusiness Management,
ASPEE Agribusiness
Management Institute, Navsari
Agricultural University, Navsari
(Gujarat)
2-Former Dean and Faculty
Chairman, SKN College of
Agriculture, Sri Karan Narendra
Agriculture University, Jobner,
Jaipur (Rajasthan)

Corresponding Author Shweta Dhanda

Article History

Received: 22. 10.2025 Revised: 27. 10.2025 Accepted: 2. 11.2025

This article is published under the terms of the <u>Creative Commons</u> <u>Attribution License 4.0</u>.

INTRODUCTION

The Changing Paradigm of Food Production

The 21st century has brought unprecedented challenges to global agriculture. The world population is expected to reach 9.7 billion by 2050, demanding a 60–70% increase in food production. Simultaneously, we face diminishing arable land, erratic rainfall, and rapid urban sprawl. Traditional soil-based farming, dependent on natural weather and vast land, struggles to meet this new demand sustainably.

As agriculture enters an urban–technological transformation, novel farming systems—Vertical Farming and Hydroponics—are gaining prominence. These systems allow year-round, high-density crop production under controlled conditions, minimizing water use, pesticide dependence, and land requirements. They promise a greener, cleaner, and smarter approach to producing food where it is needed most: within our cities.

Understanding Vertical Farming and Hydroponics Vertical Farming: Cultivating Beyond Horizons

Vertical farming is the practice of growing plants in stacked layers, vertically integrated into buildings, greenhouses, or shipping containers. The concept was popularized by Prof. Dickson Despommier (2010), envisioning farms within skyscrapers to feed urban populations sustainably.

A vertical farm functions as a multi-tier horticultural ecosystem. Each layer provides controlled light, temperature, humidity, and nutrient levels, enabling continuous crop cycles irrespective of season or geography. The use of LED grow lights and automated irrigation ensures plants receive optimal energy and nutrients. Compared to field cultivation, vertical farms can produce 5–10 times more yield per square meter.

Hydroponics: Soilless Science of Growth

Hydroponics—the foundation of vertical farming—is a soilless cultivation technique where roots receive nutrients directly from water solutions. By eliminating soil, hydroponics removes problems like salinity, pests, and weed competition.

The key hydroponic systems include:

- Nutrient Film Technique (NFT): Thin nutrient film flows around roots.
- **Deep Water Culture (DWC):** Roots suspended in oxygenated nutrient water.
- **Ebb and Flow (Flood & Drain):** Periodic flooding with nutrient solution.
- **Aeroponics:** Nutrients misted directly onto roots in air (maximizes oxygen).
- **Wick System:** Passive nutrient uptake via capillary action.

Hydroponics ensures precise nutrient control, uniform plant growth, and a 90–95% reduction in water use compared to soil farming—an essential advantage in drought-prone regions.

Technological Backbone: Engineering Meets Horticulture

Modern vertical farming is a marriage between biological science and automation engineering. Controlled Environment Agriculture (CEA) enables precise manipulation of growing conditions to achieve optimal productivity and resource efficiency.

Environmental Control Systems

Advanced vertical farms regulate parameters such as:

- **Temperature:** 18–25°C for most vegetables.
- **Relative humidity:** 60–70% for balanced transpiration.
- **CO₂ enrichment:** Enhances photosynthesis and growth rate.
- **Light management:** Full-spectrum LEDs mimic sunlight efficiently.

Computer-based controllers and IoT devices adjust these variables in real time, ensuring a closed-loop system of feedback and precision.

Role of Artificial Intelligence and Data Analytics

AI-driven systems analyze plant responses to light, nutrient uptake, and growth patterns. Machine learning models predict the best environmental settings, reducing human error and maximizing yield. Cloud-based dashboards allow remote farm management, data sharing, and decision support.

Structure and Energy Integration

Vertical farms are typically housed in modular steel frameworks, insulated panels, and polycarbonate enclosures. Integration with solar photovoltaics, biogas, and geothermal systems can minimize energy costs and carbon footprint. Energy-efficient LEDs and recirculating fans help maintain low operational expenditure.

Crop Choices and Productivity Dynamics Suitable Crops

Hydroponic and vertical systems favor shortduration, high-value horticultural crops with compact growth habits:

- **Leafy vegetables:** Lettuce, spinach, kale, mustard greens.
- **Herbs:** Basil, mint, coriander, parsley.
- **Fruiting crops:** Strawberry, cherry tomato, cucumber, bell pepper.
- **Exotic crops:** Baby greens, microgreens, edible flowers.

Crop Improvement and Genetic Potential

Selecting genotypes suitable for dense planting and artificial light is crucial. Compact, dwarf, and determinate varieties perform best. Biotechnology and precision breeding are helping develop varieties tailored for CEA, combining high yield, short internodes, and superior nutritional quality.

Quality and Nutritional Enhancement

Controlled nutrient delivery enables biofortification—enriching crops with vitamins and minerals. Hydroponically grown vegetables often show higher vitamin C, antioxidant, and flavonoid content, making them ideal for urban health-conscious consumers.

Sustainability and Resource Efficiency Water, Land, and Nutrient Efficiency

A major strength of hydroponic-vertical systems is their resource conservation:

- Water savings: Up to 90% less than soil-based farming.
- Land use: 1 m² can replace 9–10 m² of open field area.
- **Nutrient recycling:** Closed systems recapture and reuse nutrient solutions.

Environmental Benefits

These systems drastically cut pesticide use and prevent nutrient runoff, thereby protecting soil and groundwater. Moreover, by producing food near urban centers, vertical farms reduce transportation emissions and post-harvest losses.

Waste Management and Circular Economy

Plant residues are composted into biofertilizers or fed into anaerobic digesters for energy

recovery. Some farms even utilize captured CO₂ from nearby industries to enrich growing chambers—a perfect model of circular horticultural sustainability.

Socioeconomic Impact and Policy Integration Urban Employment and Entrepreneurship

Vertical farming offers new avenues for urban agripreneurship, particularly for educated youth. Startups across India—like Rise Hydrofarms (Delhi), Urban Kisaan (Hyderabad), and Barton Breeze (Gurugram)—demonstrate how urban farming can be both profitable and sustainable.

Integration with Urban Planning

Incorporating green vertical spaces into smart city projects can reduce heat islands, enhance air quality, and promote "green architecture." Rooftop and balcony hydroponics are already being promoted in metropolitan areas for local vegetable supply.

Governmental and Institutional Support

The Government of India, through ICAR, DBT, and MoA&FW, is encouraging protected cultivation and precision farming. Draft frameworks under the National Mission on Controlled Environment Agriculture (NMCEA) are expected to standardize vertical farming practices, provide financial incentives, and support R&D.

Challenges and Research Priorities

Despite its immense potential, the widespread adoption of vertical farming faces some constraints:

- **High capital investment** and limited local manufacturing of infrastructure.
- Energy demand for lighting and environmental control.
- **Limited awareness** among traditional farmers.
- Need for skilled manpower and training.

Research should focus on:

- **Indigenous technology development** for low-cost systems.
- Crop modeling and nutrient optimization under Indian conditions.
- Integration with renewable energy and smart automation.
- **Life cycle assessment** for economic and ecological evaluation.

Collaborative research between horticultural scientists, engineers, and data specialists is

essential to make these systems both affordable and scalable.

Future Prospects: Towards Resilient Urban Horticulture

The horizon of farming is expanding vertically and digitally. As cities become more populous, urban horticulture must evolve into climate-smart systems capable of producing high-quality food sustainably. Vertical farms will be an integral component of future smart cities, linking agriculture with architecture, energy, and technology.

By aligning with Sustainable Development Goals (SDG 2, SDG 11, SDG 12, and SDG 13), vertical and hydroponic farming can bridge the gap between food demand and environmental conservation. The fusion of horticultural science, renewable energy, and digital innovation will define the new era of food production.

Feeding Tomorrow through Innovation Today

Rapid urbanization, climate instability, and the shrinking availability of arable land are driving agriculture into an age of innovation. Vertical Farming and Hydroponics—as components of controlled environment agriculture (CEA)—are transforming the way food is produced, distributed, and consumed. These systems integrate horticultural science with modern engineering, optimizing resource use while ensuring sustainability. This article explores their concepts, technologies, socioeconomic implications, and future role in achieving global food and nutritional security.

The journey toward sustainable food security demands both scientific vision and societal will. Vertical Farming and Hydroponics exemplify how innovation can reimagine agriculture—transforming rooftops into fields, warehouses into gardens, and cities into green ecosystems.

As a Professor of Horticulture, one must recognize these systems as not only scientific marvels but also as pathways toward resilience, self-sufficiency, and environmental stewardship. The goal is not merely to grow more food, but to grow it smarter, cleaner, and closer to where people live.

The future of farming, indeed, is vertical.