

Mobile Apps and Digital Extension for Farmer Education

Chethan T.¹,
Subhash Verma²,
Khan Chand³, Anil Kumar⁴

¹Assistant professor
(Horticulture), College of
Agriculture, Gangavathi - 583
227, Koppal Dist., Karnataka

^{2 &4}Assistant Professor, School
of Agriculture, Eklavya
University, Damoh (Madhya
Pradesh)-470661

³Professor, Department of
Agricultural Engineering, School
of Agricultural Science,
Nagaland University,
Medziphema campus- 797106

*Corresponding Author
Chethan T.*

Article History

Received: 1.11.2025

Revised: 5.11.2025

Accepted: 10.11.2025

This article is published under the
terms of the [Creative Commons
Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Various developments in digital technologies are rapidly changing the face of agriculture in the 21st century. Traditional extension systems, though important in disseminating agricultural knowledge, have many drawbacks, such as shortage of manpower, delay in transferring information, and inaccessibility to far-flung farming communities. All these factors affect timely access to critical technical information by farmers. Mobile-based advisory tools and digital extension platforms solve this problem by providing timely, accurate, and easily understandable agricultural information directly to the farmer's mobile device. With low-priced smartphones becoming widely available across the country, improvement in rural internet connectivity, and enhancement in levels of rural digital literacy, India has reached an important inflection point in its journey towards adopting mobile applications as a crucial medium for farmer education. They augment not only traditional efforts at extension but also enhance farmers' ability to make informed decisions, adopt new technologies, and improve farm management practices.

2. Mobile Apps Importance in Farmer Education

Mobile applications have provided instant access to critical information required by farmers for crop management, fertilizer usage, weather forecasts, identification of pest and diseases, and price trends in markets. The immediacy of this information helps farmers make decisions at the appropriate time, reducing crop losses and improving productivity. Digital tools have also made the extension process highly cost-effective due to the reduced need for frequent field visits by extension personnel, thus reducing the overall cost of advisory services. Most of the mobile apps utilize GPS, remote sensing, and data analytics to provide location-specific and personalized guidance prepared according to the farm location, soil type, climatic conditions, and cropping pattern.

This customization of advisories enhances the relevance and accuracy of information, making it more useful to farmers. Mobile apps empower farmers' decision-making potentials through reliable and fact-based knowledge on issues concerning variety selection, input management, irrigation scheduling, strategies for pest control, and harvesting operations. These informed decisions help optimize the use of inputs, reduce costs of production, and make farming sustainable. In addition, mobile phone applications build capacities through education and training videos, audio tutorials, digital manuals, and interactive e-learning modules that enable farmers to learn new skills at their comfort and pace. Farmers practically learn from these digital resources many aspects of improved technologies, such as precision farming, organic cultivation of crops, protected agriculture, and value addition. Thus, mobile apps are transforming modern agricultural extension in ways that make information more accessible, affordable, and understandable to farmers in diverse regions.

3. Key Mobile Apps and Digital Platforms for Farmers

3.1 Indian Government Apps

The Government of India has introduced several mobile applications and digital tools to strengthen agricultural extension and improve access to timely information for farmers. The mKisan Portal, along with its SMS advisory service, delivers multilingual, location-specific messages related to weather conditions, crop management practices, pest and disease control measures, and government schemes. This system ensures that even farmers with basic phones can receive critical advisories in their preferred language. The Kisan Suvidha App further enhances accessibility by providing comprehensive information on weather forecasts, mandi prices, input availability, and plant protection recommendations, helping farmers plan their activities more efficiently. Another important tool is the PM-KISAN Mobile App, which enables farmers to check their financial assistance status, monitor payment updates, and access scheme-related information directly from their phones. Additionally, the upcoming AgriStack initiative aims to create a unified digital agriculture ecosystem by integrating farmer data, advisory services, and digital marketplaces to deliver highly personalized and data-driven recommendations. Together, these

government-led apps form the backbone of digital extension services in India.

3.2 Private Sector and NGO-led Apps

Along with government initiatives, private companies and NGOs have also developed innovative mobile applications to support farmer education. IFFCO Kisan App provides expert teleconsultation, agri-weather, and daily market trends information so that the farmers can avail expertise without actually traveling. The RML Farmer (Reuters Market Lite) application has become popular for its market intelligence services related to mandi prices, advisories on crops, and commodity trends. The AgroStar platform allows farmers to buy high-quality agricultural inputs directly through the app while advising on crop management and product usages. Likewise, Krishify is a social media-based agricultural community where farmers meet, share experiences, and get advice on best practices in cultivation, machinery, and innovations. Such private and NGO-driven initiatives, therefore, supplement the government services through the provision of specialized, user-friendly, and market-oriented digital solutions.

3.3 Digital Extension Platforms

Apart from mobile apps, a number of digital extension platforms have emerged that foster farmer learning and knowledge dissemination. Digital Green uses community-based videos to facilitate peer learning where farmers watch demonstrations of best practices recorded by fellow farmers or extension workers, making the content relatable and easy to understand. Platforms such as FarmStack and e-Choupal create an ICT-enabled environment that links farmers to markets, advisory services, and input suppliers, thus strengthening value chains and improving farmer livelihoods. Social media channels like YouTube, WhatsApp, and Facebook groups have also emerged as strong tools for agricultural extension because they enable the rapid sharing of training videos, real-time alerts, demonstration clips, and expert discussions. These platforms improve community engagement and provide opportunities for continuous learning; hence, they are considered vital components of modern digital extension systems.

4. Benefits of Digital Extension to Farmers

The benefits of digital extension go from quick and efficient delivery of advisories on pest and disease outbreaks, weather changes, and

emerging crop stress conditions to effective decision-making by the farmers in response. With the information in real time, it is much easier for farmers to practice prevention and reduce losses accordingly. Productivity and income are also improved because of the support provided towards informed and scientific decision-making. Data-driven recommendations regarding proper crop choice, nutrient management, irrigation, and pest control help farmers increase yields with minimum applications of costly inputs.

Other benefits include improved market and price access information. Mobile-based price alerts enable farmers to compare the rates at mandis, select remunerative markets, and avoid the exploitation of their products by intermediaries. Digital platforms promote inclusiveness because women farmers and rural youth—who are often excluded from traditional extension systems—can independently access information, training material, and expert advice through their mobile phones. Digital tools also reinforce the linkage of research, extension, and farmers by acting as an effective communication bridge. Scientists and extension workers are able to transmit updates, innovations, and recommendations, and this leads to quicker transfers of technology to the field.

5. Adoption Challenges

Despite the potential, digital extension tools face a number of challenges that hinder large-scale adoption. Digital literacy is one of the major issues, as many farmers are still uncomfortable with smartphones, mobile applications, and online platforms. A lack of confidence makes it hard for them to use the services available in these modes. Poor connectivity is another major constraint. In several rural and tribal areas, weak network coverage and frequent disturbances in internet connectivity reduce the effectiveness of mobile-based advisories.

Other challenges include relevance and language: most apps lack region-specific recommendations or use technical terms that are beyond the farmers' understanding, making them less useful. Trust and reliability also come into play: farmers usually don't like to rely solely on digital advisories but need verification of information from the local extension worker or other experienced farmers. Equally worrisome are data privacy and security concerns, since misuse or unauthorized sharing of farmer data can pose risks and diminish trust in digital platforms.

6. Mobile-Based Farmer Education Strengthening Strategies

Strengthening mobile-based farmer education requires a combination of technological improvement, capacity building, and institutional support. The most critical strategy to be pursued is the development of regional language content that is simple, visual, and farmer-friendly. Videos, voice notes, pictorial guides, and interactive modules facilitate easy comprehension among farmers. This can further be accelerated through public-private partnerships by aggregating technical expertise, developing sustainable business models, and ensuring wider reach.

Other key imperatives involve the strengthening of rural digital infrastructure through strong mobile networks and reliable internet connectivity, as these are very crucial for effective digital extension. Capacity-building programs through digital literacy camps, hands-on training sessions, and awareness programs on safe internet usage will help farmers navigate confidently through mobile apps and online platforms. Lastly, integrating digital tools with traditional extension—such as mobile advisories with field demonstrations, expert visits, and farmer meetings—can bring in a blended model that ensures maximum trust and effectiveness. This hybrid model ensures complete, practical, and credible guidance for farmers to improve agricultural productivity.

7. Future Prospects

Artificial intelligence, the Internet of Things, machine learning, blockchain, drones, and satellite-based advisory systems are some of the emerging technologies that will transform digital extension. Farmers will then be able to practice precision agriculture, empowered with hyper-local advisories, automated pest diagnosis, and real-time monitoring of crops. India has embarked on a digitally enabled agricultural ecosystem with the recent launch of Digital Agriculture Mission and AgriStack initiatives.

8. CONCLUSION

Mobile apps and digital extension are strong tools for modernizing agricultural education and giving farmers actionable knowledge. They enhance efficiency, improve farm productivity, and help farmers make informed decisions. While many challenges persist, strategic interventions, capacity-building initiatives, and strengthened digital infrastructure hold the key to

unlocking the full potential of digital agriculture. The future of farmer education lies in a balanced integration of technology with traditional wisdom.

REFERENCE

Kamal, M., & Bablu, T. A. (2023). Mobile applications empowering smallholder farmers: A review of the impact on agricultural development. *International Journal of Social Analytics*, 8, 36-50.

Kumar, N. (2025). Digital Platforms and E-Extension Services in Agriculture. *Transforming Agriculture through Modern Extension Education Techniques*, 120.

Naika, M. B., Kudari, M., Devi, M. S., Sadhu, D. S., & Sunagar, S. (2021). Digital extension service: quick way to deliver agricultural information to the farmers. In *Food technology disruptions* (pp. 285-323). Academic Press.

Singh, N. K., Sunitha, N. H., Tripathi, G., Saikanth, D. R. K., Sharma, A., Jose, A. E., & Mary, M. V. (2023). Impact of digital technologies in agricultural extension. *Asian Journal of Agricultural Extension, Economics & Sociology*, 41(9), 963-970.